Do Skittles or M&Ms have more orange candies?

Mr. Wilcox believes that Skittles have a higher proportion of orange candies than M&Ms, while Mrs. Gallas believes the opposite. Who is correct?

1. Take an SRS of 50 Skittles and an SRS of 50 M&Ms. Calculate the proportion of orange candies in each sample and find the difference between proportions (Skittles - M&Ms).

Skittles:_____ M&Ms:_____ Difference (Skittles – M&Ms):_____

2. Write the difference on a sticker dot and place on the dot plot at the board. Copy the class dot plot below.

3. What does each dot represent?

4. For the dotplot above, make a prediction about the following:

Shape:

Center (mean):

Variability (SD):

N	2	m	م	•
IN	α		1	•

A Google search reveals that 21.6% of Skittles are orange and 20% of M&Ms are orange.

5. Describe the <u>sampling distribution of the sample proportion of orange</u> for Skittles (*X*) and the <u>sampling distribution of the sample proportion of orange</u> for M&Ms (*Y*) for samples of size 50.

	Skittles (X)	M&Ms (Y)
Shape:		
Mean:		
SD:		

6. Describe the sampling distribution of the <u>difference between proportions</u> of orange Skittles and M&Ms (X - Y).

Shape:

Mean of difference between proportions:

Standard deviation of the difference between proportions:

7. Mr. Wilcox and Mrs. Gallas calculated a difference between proportions of 0.08 from their samples. Calculate the probability of getting this difference in proportions or higher.

The Sampling Distribution of $\hat{p}_1 - \hat{p}_2$

Important ideas:			
	<u> </u>		

Check Your Understanding

At Westville High School there are 315 seniors and 389 juniors. 65% of the seniors have parking passes and 42% of the juniors have parking passes. The statistics teacher selects a SRS of 30 seniors and a separate SRS of 30 juniors. Let $\hat{p}_S - \hat{p}_J$ be the difference in the sample proportions of seniors and juniors that have parking passes.

- a. What is the shape of the sampling distribution of $\hat{p}_{S} \hat{p}_{I}$? Why?
- b. Find the mean of the sampling distribution.
- c. Calculate and interpret the standard deviation of the sampling distribution.

d. What is the probability that the difference in sample proportions (senior – junior) of students with parking passes is greater than 30%?

